|
Решения из сборника задач для абитуриентов
|
Решения из сборника задач для абитуриентов |
Страницы: 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Решение задач по геометрии для для выпускников старших классов и подготовки абитуриентов к экзаменам
Перейти к содержанию Решения задач по геометрии для абитуриентов
1 В равнобедренном треугольнике основание в два раза меньше боковой стороны, а периметр равен 50 см. Найдите стороны треугольника
2 На основании BC равнобедренного треугольника ABC отмечены точки M и N так, что BM = CN. Докажите, что: а) ΔBAM = ΔCAN; б) треугольник AMN равнобедренный.
3 В равнобедренном треугольнике ABC с основанием AC проведена биссектриса AD. Найдите ADC, если С = 50
4 Докажите, что в равнобедренном треугольнике отрезок, соединяющий любую точку основания, отличную от вершины, с противоположной вершиной, меньше боковой стороны.
1 Докажите, что в равностороннем треугольнике все углы равны
2 В равнобедренном треугольнике ABC с основанием AC проведена медиана BD. На сторонах AB и СИ отмечены соответственно точки E и F так, что AE = CF. Докажите, что BDE = BDF; ADE = CDF.
3 В треугольниках ABC и A1B1C1 отрезки CO и C1O1 медианы, BC = B1C1, B = B1 и С = С1. Докажите, что: AOС = A1O1C1; BCO = B1C1O1.
4 AB = CD, AD = BC, BE биссектриса угла ABC, а DF биссектриса угла ADC. Докажите, что ABE = ADF; ABE = CDF.
5 Биссектрисы углов A и B треугольника ABC пересекаются в точке M. Найдите AMB, если A = 58, B = 96
6 Через вершину С треугольника ABC проведена прямая, параллельная его биссектрисе AA1 и пересекающая прямую AB в точке D. Докажите, что AC = AD.
1 Медиана AD треугольника ABC продолжена за сторону BC на отрезок DE, равный AD, и точка E соединена с точкой C. Докажите, что ABD = ECD; найдите ACE, если ACD = 56, ABD = 40
2 Медиана AM треугольника ABC равна отрезку BM. Докажите, что один из углов треугольника ABC равен сумме двух других углов.
3 В треугольниках ABC и A1B1C1 AB = A1B1, BC = B1C1, B = B1. На сторонах AB и A1B1 отмечены точки D и D1 так, что ACD = A1C1D1. Докажите, что BCD = B1C1D1.
4 В треугольниках ABC и A1B1C1 отрезки AD и A1D1 биссектрисы, AB = A1B1, BD = B1D1 и AD = A1D1. Докажите, что ABC = A1B1C1
5 Докажите, что каждый угол равностороннего треугольника равен 60
1 Существует ли треугольник со сторонами 1 м, 2 м и 3 м; 1,2 дм, 1 дм и 2,4 дм
1 1. В равнобедренном треугольнике одна сторона равна 25 см, а другая равна 10 см. Какая из них является основанием
2 Два внешних угла треугольника при разных вершинах равны. Периметр треугольника равен 74 см, а одна из сторон равна 16 см. Найдите две другие стороны треугольника.
1 Периметр равнобедренного треугольника равен 25 см, разность двух сторон равна 4 см, а один из его внешних углов – острый. Найдите стороны треугольника.
1 Из середины D стороны BC равностороннего треугольника ABC проведен перпендикуляр DM к прямой AC. Найдите AM, если AB = 12 см.
2 В треугольниках ABC и A1B1C1 углы A и A1 прямые, BD и B1D1 биссектрисы. Докажите, что ΔABC = A1B1C1, если B = B1 и BD = B1D1.
1 Один из углов прямоугольного треугольника равен 60, а сумма гипотенузы и меньшего из катетов равна 26,4 см. Найдите гипотенузу треугольника
2 Угол, противолежащий основанию равнобедренного треугольника, равен 120. Высота, проведенная к боковой стороне, равна 9 см. Найдите основание треугольника.
3 Высоты AA1 и BB1 треугольника ABC пересекаются в точке М. Найдите AMB, если A = 55, B = 67
4 На сторонах угла O отмечены точки A и B так, что OA = OB. Через эти точки проведены прямые, перпендикулярные к сторонам угла и пересекающиеся в точке C. Докажите, что луч OC биссектриса угла O
1 Докажите, что в равнобедренном треугольнике высоты, проведенные из вершин основания, равны.
2 Докажите, что два остроугольных треугольника равны, если сторона и высоты, проведенные из концов этой стороны, одного треугольника соответственно равны стороне и высотам, проведенным из концов этой стороны, другого треугольника
|
|