59.3. Поезд двигался с начальной скоростью 15 м/с. При торможении ускорение замедленного движения постоянно во времени, но может принимать различные значения. Предполагается, что ускорение w является случайной величиной с гауссовским распределением, с математическим ожиданием mw = —0,2 м/с2 и средним квадратическим отклонением σw =0,03 м/с2. Определить математическое ожидание и среднее квадратическое отклонение тормозного расстояния до остановки, а также верхнюю границу тормозного расстояния, вероятность превышения которой составляет 0,05. |
Задача из учебного пособия Мещерский |
Данная задача находится в разделе
Решебник Мещерский на странице № 58
<<< Предыдущая задача из Мещерский 59.2. Самолет летит по прямой линии от начального пункта. Угол ψ отклонения этой прямой от заданной прямолинейной траектории в разных полетах может принимать различные значения. Предполагается, что угол ψ является случайной величиной с гауссовским распределением, его математическое ожидание равно нулю, а среднее квадратическое отклонение равно σψ = 2°. Определить значения вероятности того, что на расстояниях L = 50; 100; 200 км боковое отклонение от заданной траектории не превысит 5 км. Следующая задача из Мещерский >>> 59.4. При расчетной оценке точности стрельбы в мишень принимается, что скорость полета пули постоянна, учитывается случайное отклонение оси ствола и случайное отличие скорости пуль от номинального значения. Считается, что пуля попадает точно в центр мишени, если при точном задании направления оси ствола скорость вылета равна номинальному значению 600 м/с. Углы отклонения φ и ψ оси ствола от заданного направления и отличие Δv скорости вылета от номинального значения считаются независимыми случайными величинами с гауссовским распределением, с нулевыми математическими ожиданиями и со средними квадратическими отклонениями соответственно σφ= σψ= 0,5*10-3 рад и σv = 75 м/с. Расстояние до мишени равно l = 50 м. Определить симметричные интервалы для горизонтального и вертикального смещений точек попадания в мишень относительно ее центра, соответствующие вероятности 0,99.
|
| |