ГДЗ к задачнику Мещерский по термеху
ГДЗ, решебники, лабораторные работы » ГДЗ онлайн » ГДЗ по термеху » ГДЗ к задачнику Мещерский
ГДЗ к задачнику Мещерский
Решения задач из учебника Мещерский
Страницы: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  12  |  13  |  14  |  15  |  16  |  17  |  18  |  19  |  20  |  21  |  22  |  23  |  24  |  25  |  26  |  27  |  28  |  29  |  30  |  31  |  32  |  33  |  34  |  35  |  36  |  37  |  38  |  39  |  40  |  41  |  42  |  43  |  44  |  45  |  46  |  47  |  48  |  49  |  50  |  51  |  52  |  53  |  54  |  55  |  56  |  57  |  58  |  59  |  60
Чтобы посмотреть решение, нажмите на соответствующее условие задачи

Посмотреть содержание ГДЗ задачника Мещерского


57.1 При испытаниях рессор была получена треугольная характеристика изменения упругой силы. При отклонении рессоры от положения статического равновесия имеет место верхняя ветвь (с1) характеристики, при возвращении — нижняя ветвь (с2) характеристики. В начальный момент рессора отклонена от положения статического равновесия на дг0 и не имеет начальной скорости. Масса надрессорного тела т, массой рессоры пренебречь; коэффициенты жесткости рессоры с1 и с2. Написать уравнения свободных колебаний рессоры для первой половины полного периода колебании и найти полный период колебании

57.2 Определить закон убывания амплитуд свободных колебаний рессоры, рассмотренной в предыдущей задаче. При записи свободных колебаний был получен следующий ряд последовательно убывающих амплитуд: 13,0 мм, 7,05 мм, 3,80 мм, 2,05 мм и т. д. Определить согласно данным виброграммы отношение коэффициентов жесткости с1/с2, соответствующих верхней и нижней ветвям треугольной характеристики.

57.3 Масса m колеблется на пружине, коэффициент жесткости которой c. На одинаковых расстояниях Д от положения равновесия установлены жесткие упоры. Считая, что удары об упоры происходят с коэффициентом восстановления, равным единице, определить закон движения системы при периодических колебаниях с частотой ω. Найти возможные значения ω.

57.4 Решить предыдущую задачу в предположении, что имеется только нижний упор.

57.5 Определить зависимость амплитуды первой гармоники свободных колебаний от их частоты в системе, уравнение движения которой имеет вид mx + F0 sign(x) + cx = 0

57.6 Движение системы описывается уравнением. Определить амплитуду автоколебательного процесса, возникающего в системе; исследовать его устойчивость.

57.7 Выявить условия, при которых в системе, рассмотренной в задаче 56.19, могут возникнуть автоколебания, близкие к гармоническим колебаниям частоты k = √c/m где с — коэффициент жесткости пружины, m — масса ползуна. Определить приближенно амплитуду этих автоколебаний

57.8 Предполагая, что в системе, рассмотренной в задаче 56.19, сила трения Н постоянна и равна Н2 при v <>0 и равна Н1 при v = 0 ( трение покоя ), определить период автоколебаний. Принять, что масса ползуна m, а коэффициент жесткости пружины c.

57.9 Масса m связана с неподвижным основанием пружиной с жесткостью с и демпфером сухого трения, величина силы сопротивления в котором не зависит от скорости и равна H. На одинаковых расстояниях Δ от положения равновесия установлены жесткие упоры. Считая, что удары об упоры происходят с коэффициентом восстановления, равным единице, определить значение H, при котором вынуждающая сила F cos(ωt) не может вызвать субгармонических резонансных колебаний, имеющих частоту ω/s (s — целое число).

57.10 Центр однородного кругового цилиндра, катящегося без скольжения по горизонтальной плоскости, соединен пружиной с неподвижной точкой O, находящейся на одной вертикали с центром диска, когда диск находится в положении равновесия. Масса цилиндра равна m, коэффициент жесткости пружины c. В положении равновесия пружина не деформирована, длина ее равна l. Определить зависимость периода малых колебаний цилиндра около положения равновесия от амплитуды a, сохранив в уравнении движения члены, содержащие третью степень перемещения.

57.11 Методом малого параметра определить амплитуду а и период автоколебаний, возникающих в системе, движение которой определяется уравнением

57.12 Уравнения движения маятника в среде с сопротивлением и постоянным моментом, действующим только в одном направлении, имеют вид где h, k и М0—постоянные величины. Считая, что 2h/k<<1. 1, М0/k2 <<1, применить метод медленно меняющихся коэффициентов для нахождения установившегося движения маятника.

57.13 Применяя в предыдущей задаче метод точечных преобразований, найти неподвижную точку преобразования.