|
ГДЗ к учебнику Погорелов для 10 класса
|
Решения задач из учебника Погорелов для 10 класса |
Страницы: 1 | 2 | 3 | 4 |
Для просмотра решения нажмите на нужную вам задачу
Содержание ГДЗ из задач к учебнику по геометрии Погорелова для учащихся 10 классов
- 15. Аксиомы стереометрии и их простейшие следствия
- 16. Параллельность прямых и плоскостей
- 17. Перпендикулярность прямых и плоскостей
- 18. Декартовы координаты и векторы в пространстве
1. Докажите. что через любую точку прямой в пространстве можно провести перпендикулярную ей прямую.
2. Докажите, что через любую точку прямой в пространстве можно провести две различные перпендикулярные ей прямые.
3. Прямые AB, AC и AD попарно перпендикулярны. Найдите отрезок CD, если: 1) AB = 3 см, BC = 7 см, AD = 1,5 см; 2) BD = 9 см, BC = 16 см, AD = 5 см; 3) AB = b, DC = а, AD = d; 4) BD = с, BC = а, AD = d.
4. Стороны четырехугольника ABCD и прямоугольника A1B1C1D1 соответственно параллельны. Докажите, что ABCD — прямоугольник.
5. Докажите, что через точку, не лежащую в данной плоскости, нельзя провести более одной прямой, перпендикулярной этой плоскости.
6. Через центр описанной около треугольника окружности проведена прямая, перпендикулярная плоскости треугольника. Докажите, что каждая точка этой прямой равноудалена от вершины треугольника.
7. Через вершину А прямоугольника ABCD проведена прямая AK, перпендикулярная его плоскости. Расстояние от точки К до других вершин прямоугольника равны 6 м, 7 м и 9 м. Найдите отрезок AK.
8. Через вершину острого угла прямоугольного треугольника ABC с прямым углом С проведена прямая AD, перпендикулярная плоскости треугольника. Найдите расстояние от точки D до вершин В и С, если АС = а, BC = b, AD = с.
9. Докажите, что через данную точку прямой можно провести одну и только одну перпендикулярную ей плоскость.
10. Через точку А прямой а проведены перпендикулярные ей плоскость β и прямая b. Докажите, что прямая b лежит в плоскости β.
11. Докажите, что через данную точку плоскости можно провести одну и только одну перпендикулярную ей прямую.
12. Докажите, что через любую точку А можно провести прямую, перпендикулярную данной плоскости α.
13. Через вершину квадрата ABCD проведена прямая BM, перпендикулярная его плоскости. Докажите, что: 1) прямая AD перпендикулярна плоскости прямых AB и BM; 2) прямая CD перпендикулярна плоскости прямых BC и BM.
14. Через точки A и B проведены прямые, перпендикулярные плоскости α, пересекающие ее в точках С и D соответственно. Найдите расстояние между точками A и B, если AC = 3 м, BD = 2 м, CD = 2,4 м и отрезок AB не пересекает плоскость α.
15. Верхние концы двух вертикально стоящих столбов, удаленных на расстояние 3,4 м, соединены перекладиной. Высота одного столба 5,8 м, а другого — 3,9 м. Найдите длину перекладины.
16. Телефонная проволока длиной 15 м протянута от телефонного столба, где она прикреплена на высоте 8 м, от поверхности земли, к дому, где ее прикрепили на высоте 20 м. Найдите расстояние между домом и столбом, предполагая, что проволока не провисает.
17. Точка A находится на расстоянии a от вершин равностороннего треугольника со стороной a. Найдите расстояние от точки A до плоскости треугольника.
18. Из точки S вне плоскости α проведены к ней три равные наклонные SA, SB, SC и перпендикуляр SO. Докажите, что основание перпендикуляра O является центром окружности, описанной около треугольника ABC.
19. Стороны равностороннего треугольника равны 3 м. Найдите расстояние до плоскости треугольника от точки, которая находится на расстоянии 2 м от каждой из его вершин.
20. В равнобедренном треугольнике основание и высота равны 4 м. Данная точка находится на расстоянии 6 м от плоскости треугольника и на равном расстоянии от его вершин. Найдите это расстояние.
21. Расстояния от точки A до вершин квадрата равны а. Найдите расстояние от точки А до плоскости квадрата, если сторона квадрата равна b.
22. Найдите геометрическое место оснований наклонных данной длины, проведенных из данной точки к плоскости.
23. Из точки к плоскости проведены две наклонные, равные 10 см и 17 см. Разность проекций этих наклонных равна 9 см. Найдите проекции наклонных.
24. Из точки к плоскости проведены две наклонные. Найдите длины наклонных, если:1) одна на 26 см больше другой, а проекции наклонных равны 12 см и 40 см; 2) наклонные относятся как 1 : 2, а проекции наклонных равны 1 см и 7 см.
25. Из точки к плоскости проведены две наклонные, равные 23 см и 33 см. Найдите расстояние от этой точки до плоскости, если проекции наклонных относятся как 2 : 3.
26. Докажите, что если прямая параллельна плоскости, то все ее точки находятся на одинаковом расстоянии от плоскости.
27. Через вершину прямого угла C прямоугольного треугольника ABC проведена плоскость, параллельная гипотенузе, на расстоянии 1 м от нее. Проекция катетов на эту плоскость равны 3 м и 5 м. Найдите гипотенузу.
28. Через одну сторону ромба проведена плоскость на расстоянии 4 м от противолежащей стороны. Проекции диагоналей на эту плоскость равны 8 м и 2 м. Найдите проекции этих сторон.
29. Из концов отрезка AB, параллельного плоскости, проведены перпендикуляр АС и наклонная BD, перпендикулярная отрезку AB. Чему равно расстояние CD, если AB = а, AC = b, BD = с?
30. Докажите, что расстояние от всех точек плоскости до параллельной плоскости одинаковы.
31. Расстояние между двумя параллельными плоскостями равно а. Отрезок длины b своими концами упирается в эти плоскости. Найдите проекцию отрезка на каждую из плоскостей.
32. Два отрезка длин а и b упираются концами в две параллельные плоскости. Проекция первого отрезка (длины а) на плоскость равна с. Найдите проекцию второго отрезка.
33. Концы данного отрезка, не пересекающего плоскость, удалены от нее на 0,3 м и 0,5 м. Как удалена от плоскости точка, делящая данный отрезок в отношении 3 : 7?
34. Через середину отрезка проведена плоскость. Докажите, что концы отрезка находятся на одинаковом расстоянии от этой плоскости.
35. Через диагональ параллелограмма проведена плоскость. Докажите, что концы другой диагонали находятся на одинаковом расстоянии от этой плоскости.
36. Найдите расстояние от середины отрезка AB до плоскости, не пересекающей этот отрезок, если расстояние от точек A и B до плоскости равны: 1) 3,2 см и 5,3 см; 2) 7,4 см и 6,1 см; 3) а и b.
37. Решите предыдущую задачу, считая. что отрезок AB пересекает плоскость.
38. Отрезок длины 1 м пересекает плоскость, концы его удалены от плоскости на 0,5 м и на 0,3 м. Найдите длину проекции отрезка на плоскость.
39. Через основание трапеции проведена плоскость, отстающая от другого основания на расстояние а. Найдите расстояние от точки пересечения диагоналей трапеции до этой плоскости. если основания трапеции относятся как m : n.
40. Через сторону параллелограмма проведена плоскость на расстоянии а от противолежащей стороны. Найдите расстояние от точки пересечения диагоналей параллелограмма до этой плоскости.
41. Из вершины квадрата восстановлен перпендикуляр к его плоскости. Расстояния от конца этого перпендикуляра до других вершин квадрата равны а и b (а < b). Найдите длину перпендикуляра и сторону квадрата.
42. Из вершины прямоугольника восстановлен перпендикуляр к его плоскости. Расстояние от конца этого перпендикуляра до других вершин прямоугольника равны а, b, с (а < c, b < c). Найдите длину перпендикуляра и стороны прямоугольника.
43. Из данной точки к плоскости проведены две наклонные длиной 2 м. найдите расстояние от точки до плоскости, если наклонные образуют угол 60°, а их проекции перпендикулярны.
44. Из точки, отстоящей от плоскости на расстояние 1 м, проведены две равные наклонные. Найдите расстояние между основаниями наклонных, если известно, что наклонные перпендикулярны и образуют с перпендикуляром к плоскости углы, равные 60°.
45. Через центр вписанной в треугольник окружности проведена прямая, перпендикулярная плоскости треугольника. Докажите, что каждая точка этой прямой равноудалена от сторон треугольника.
46. К плоскости треугольника из центра вписанной в него окружности радиуса 0,7 м восстановлен перпендикуляр длиной 2,4 м. Найдите расстояние от конца этого перпендикуляра до сторон треугольника.
47. Расстояние от данной точки до плоскости треугольника равно 1,1 м, а до каждой из его сторон — 6,1 м. Найдите радиус окружности, вписанной в этот треугольник.
48. Из вершины равностороннего треугольника ABC восстановлен перпендикуляр AD к плоскости треугольника. Найдите расстояние от точки D до стороны BC, если AD = 13 см, BC = 6 см.
49. Через конец А отрезка AB длины b проведена плоскость, перпендикулярная отрезку, и в этой плоскости проведена прямая. Найдите расстояние от точки B до прямой, если расстояние от точки A до прямой равно a.
50. Расстояния от точки A до всех сторон квадрата равны a. Найдите расстояние от точки A до плоскости квадрата, если диагональ квадрата равна d.
51. Точка M, лежащая вне плоскости данного прямого угла, удалена от вершины угла на расстояние a, а от его сторон на расстояние b. Найдите расстояние от точки M до плоскости угла.
52. Дан равнобедренный треугольник с основанием 6 м и боковой стороной 5 м. Из центра вписанного круга восставлен перпендикуляр к плоскости треугольника длиной 2 м. Найдите расстояние от конца этого перпендикуляра до сторон треугольника.
53. Из вершины прямого угла С треугольника АВС восставлен перпендикуляр CD к плоскости треугольника. Найдите расстояние от точки D до гипотенузы треугольника, если АВ= а, ВС=b, CD= с.
54. Даны прямая а и плоскость α. Проведите через прямую а плоскость, перпендикулярную плоскости α.
55. Даны прямая а и плоскость α. Докажите, что все прямые, перпендикулярные плоскости α и пересекающие прямую а, лежат в одной плоскости, перпендикулярной плоскости α.
56. Из вершин A и B равностороннего треугольника ABC восстановлены перпендикуляры AA1 и BB1 к плоскости треугольника. Найдите расстояние от вершины C до середины отрезка A1B1, если AB = 2 м, CA1 = 3 м; CB1 = 7 м и отрезок A1B1 не пересекает плоскость треугольника
57. Из вершин А и В острых углов прямоугольного треугольника АВС восставлены перпендикуляры AA1 и BB1 к плоскости треугольника. Найдите расстояние от вершины С до середины отрезка А1В1, если А1С=4 м, А1А=3 м, В1С = 6 м, В1В = 2 м и отрезок А1В1 не пересекает плоскости трегольника
58. Докажите, что если прямая, лежащая в одной из двух перпендикулярных плоскостей, перпендикулярна линии их пересечения, то она перпендикулярна и другой плоскости.
59. Из точек A и B, лежащих в двух перпендикулярных плоскостях, опущены перпендикуляры АС и BD на прямую пересечения плоскостей. Найдите длину отрезка AB, если:1) AC = 6 м, BD = 7 м, CD = 6 м;2) АС = 3 м, BD = 4 м, СD = 12 м;3) AD = 4 м, ВС = 7 м. CD = 1 м; 4) AD = ВС = 5 м. CD = 1 м; 5) АС = a. CD = с. BD = Ь: 6) AD = а. ВС = b, CD = с.
60. Точка находится на расстоянии a и b от двух перпендикулярных плоскостей. Найдите расстояние от этой точки до прямой пересечения плоскостей.
61. Плоскости α и β перпендикулярны. В плоскости α взята точка А, расстояние от которой до прямой с (линия пересечения плоскостей) равно 0,5 м. В плоскости в проведена прямая b, параллельная прямой с и отстоящая от нее на 1,2 м. Найдите расстояние от точки A до прямой b
62. Перпендикулярные плоскости a и b пересекаются по прямой c. В плоскости а проведена прямая a || c, в плоскости β — прямая b || c. Найдите расстояние между прямыми a и b, если расстояние между прямыми a и с равно 1,5 м, а между прямыми b и c — 0,8 м.
|
|