ГДЗ к задачнику Чертов Воробьев по физике
ГДЗ, решебники, лабораторные работы » ГДЗ онлайн » ГДЗ по физике » ГДЗ к задачнику Чертов Воробьев
ГДЗ к задачнику Чертов Воробьев
Готовые домашние задания учебника Чертов Воробьев
Страницы: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  12  |  13  |  14  |  15  |  16  |  17  |  18  |  19  |  20  |  21  |  22  |  23  |  24  |  25  |  26  |  27  |  28  |  29  |  30  |  31  |  32  |  33  |  34  |  35  |  36  |  37  |  38  |  39  |  40  |  41  |  42  |  43  |  44  |  45  |  46  |  47  |  48  |  49  |  50  |  51  |  52
Чтобы посмотреть решение, нажмите на соответствующую задачу

Посмотреть содержание ГДЗ учебника Чертов Воробьев

1 Кинематическое уравнение движения материальной точки по прямой ось x имеет вид x=A+Bt+Ct3, где A=4 м, B=2 м/с, C=-0,5 м/с3. Для момента времени t1=2 с определить координату x1 точки, мгновенную скорость, мгновенное ускорение a1

2 Кинематическое уравнение движения материальной точки по прямой ось x имеет вид A+Bt+Ct2, где A=5 м, В=4 м/с, С=-1 м/с2. Построить график зависимости координаты x и пути s от времени. Определить среднюю скорость за интервал времени от t1=1 до t2=6 c. 3. Найти среднюю путевую скорость за тот же интервал времени.

3 Автомобиль движется по закруглению шоссе, имеющему радиус кривизны R=50 м. Уравнение движения автомобиля A+Bt+Ct2, где A=10 м, B=10 м/с, C=-0,5 м/с2. Найти скорость автомобиля, его тангенциальное, нормальное и полное ускорения в момент времени t=5 c; длину пути s и модуль перемещения автомобиля за интервал времени τ=10 c, отсчитанный с момента начала движения

4 Маховик, вращавшийся с постоянной частотой n0=10 с-1, при торможении начал вращаться равнозамедленно. Когда торможение прекратилось, вращение маховика снова стало равномерным, но уже с частотой n=6. Определить угловое ускорение ε маховика и продолжительность t торможения, если за время равнозамедленного движения маховик сделал N=50 оборотов.

1.1 Две прямые дороги пересекаются под углом 60. От перекрестка по ним удаляются машины: одна со скоростью v1=60 км/ч, другая со скоростью v2=80 км/ч. Определить скоростии, с которыми одна машина удаляется от другой. Перекресток машины прошли одновременно.

1.2 Точка двигалась в течение 15 с со скоростью v1=5 м/с, в течение t2=10 с со скоростью v2=8 м/с и в течение t3=6 с со скоростью v3=20 м/с. Определить среднюю путевую скорость точки.

1.3 Три четверти своего пути автомобиль прошел со скоростью v1=60 км/ч, остальную часть пути со скоростью v2=80 км/ч. Какова средняя путевая скорость автомобиля

1.4 Первую половину пути тело двигалось со скоростью v1=2 м/с, вторую со скоростью v2=8 м/с. Определить среднюю путевую скорость

1.5 Тело прошло первую половину пути за время t1=2 c, вторую за время t2=8 c. Определить среднюю путевую скорость тела, если длина пути s=20 м.

1.6 Зависимость скорости от времени для движения некоторого тела представлена на рис. 1.4. Определить среднюю путевую скорость за время t=14 c.

1.7 Зависимость ускорения от времени при некотором движении тела представлена на рис. 1.5. Определить среднюю путевую скорость за время t=8 c. Начальная скорость v0=0.

1.8 Уравнение прямолинейного движения имеет вид x=At+Bt2, где A=3 м/с, В=-0,25 м/с2. Построить графики зависимости координаты и пути от времени для заданного движения.

1.9 На рис. 1.5 дан график зависимости ускорения от времени для некоторого движения тела. Построить графики зависимости скорости и пути от времени для этого движения, если в начальный момент тело покоилось

1.10 Движение материальной точки задано уравнением x=At+Bt2, где А=4 м/с, В=-0,05 м/с2. Определить момент времени, в который скорость v точки равна нулю. Найти координату и ускорение в этот момент. Построить графики зависимости координаты, пути, скорости и ускорения этого движения от времени.

1.11 Написать кинематическое уравнение движения x=f(t) точки для четырех случаев, представленных на рис. 1.6. На каждой позиции рисунка изображена координатная ось Ох, указаны начальные положение х0 и скорость v0 материальной точки A, а также ее ускорение a.

1.12 Прожектор О установлен на расстоянии 100 м от стены AB и бросает светлое пятно на эту стену. Прожектор вращается вокруг вертикальной оси, делая один оборот за время T=20 c. Найти уравнение движения светлого пятна по стене в течение первой четверти оборота; скорость, с которой светлое пятно движется по стене, в момент времени t=2 c. За начало отсчета принять момент, когда направление луча совпадает с OC

1.13 Рядом с поездом на одной линии с передними буферами паровоза стоит человек. В тот момент, когда поезд начал двигаться с ускорением a=0,1 м/с2, человек начал идти в том же направлении со скоростью v=1,5 м/с. Через какое время t поезд догонит человека? Определить скорость v1 поезда в этот момент и путь, пройденный за это время человеком.

1.14 Из одного и того же места начали равноускоренно двигаться в одном направлении две точки, причем вторая начала свое движение через 2 с после первой. Первая точка двигалась с начальной скоростью v1=1 м/с и ускорением a1=2 м/с2, вторая с начальной скоростью v2=10 м/с и ускорением а2=1 м/с2. Через сколько времени и на каком расстоянии от исходного положения вторая точка догонит первую?

1.15 Движения двух материальных точек выражаются уравнениями x1=A1+B1t+C1t2, x2=A2+B2t+C2t2, где A1=20 м, A2=2 м, B2=B1=2 м/с, C1=-4 м/с2, C2=0,5 м/с2. В какой момент времени скорости этих точек будут одинаковыми? Определить скорости v1 и v2 и ускорения a1 и a2 точек в этот момент.

1.16 Две материальные точки движутся согласно уравнениям: x1=A1t+B1t2+C1t3, x2=A2t+B2t2+C2t3, где A1=4 м/с, B1=8 м/с2, C1=-16 м/с3, A2=2 м/с, B2=-4 м/с2, C2=1 м/с3. В какой момент времени t ускорения этих точек будут одинаковы? Найти скорости v1 и v2 точек в этот момент.

1.17 С какой высоты H упало тело, если последний метр своего пути оно прошло за время t=0,1 с

1.18 Камень падает с высоты h=1200 м. Какой путь s пройдет камень за последнюю секунду своего падения

1.19 Камень брошен вертикально вверх с начальной скоростью v0=20 м/с. По истечении какого времени камень будет находиться на высоте h=15 м? Найти скорость камня на этой высоте. Сопротивлением воздуха пренебречь. Принять g=10 м/с2.

1.20 Вертикально вверх с начальной скоростью v0=20 м/с брошен камень. Через τ=1 с после этого брошен вертикально вверх другой камень с такой же скоростью. На какой высоте h встретятся камни

1.21 Тело, брошенное вертикально вверх, находилось на одной и той же высоте h=8,6 м два раза с интервалом t=3 c. Пренебрегая сопротивлением воздуха, вычислить начальную скорость брошенного тела.

1.22 С балкона бросили мячик вертикально вверх с начальной скоростью v0=5 м/с. Через t=2 с мячик упал на землю. Определить высоту балкона над землей и скорость мячика в момент удара о землю.

1.23 Тело брошено с балкона вертикально вверх со скоростью v0=10 м/с. Высота балкона над поверхностью земли h=12,5 м. Написать уравнение движения и определить среднюю путевую скорость с момента бросания до момента падения на землю.

1.24 Движение точки по прямой задано уравнением x=At+Bt2, где А=2 м/с, В=-0,5 м/с2. Определить среднюю путевую скорость движения точки в интервале времени от t1=1 с до t2=3 c.

1.25 Точка движется по прямой согласно уравнению x=At+Bt3, где А=6 м/с, В=-0,125 м/с3. Определить среднюю путевую скорость точки в интервале времени от t1=2 с до t2=6 c.

1.26 Материальная точка движется по плоскости согласно уравнению r(t)=iAt3+jBt2. Написать зависимости v(t); a(t)

1.27 Движение материальной точки задано уравнением r(t)=A(i cos ωt+j sin ωt), где А=0,5 м, ω=5 рад/с. Начертить траекторию точки. Определить модуль скорости и модуль нормального ускорения

1.28 Движение материальной точки задано уравнением r(t)=i(A+Bt2)+jCt, где A=10 м, В=-5 м/с2, С=10 м/с. Начертить траекторию точки. Найти выражения v(t) и a(t). Для момента времени t=1 с вычислить: модуль скорости; модуль ускорения; модуль тангенциального ускорения; модуль нормального ускорения

1.29 Точка движется по кривой с постоянным тангенциальным ускорением 0,5 м/с2. Определить полное ускорение a точки на участке кривой с радиусом кривизны R=3 м, если точка движется на этом участке со скоростью v=2 м/с.

1.30 Точка движется по окружности радиусом R=4 м. Начальная скорость v0 точки равна 3 м/с, тангенциальное ускорение 1 м/с2. Для момента времени t=2 с определить: длину пути s, пройденного точкой; модуль перемещения; среднюю путевую скорость; модуль вектора средней скорости

1.31 По окружности радиусом R=5 м равномерно движется материальная точка со скоростью v=5 м/с. Построить графики зависимости длины пути s и модуля перемещения от времени t. В момент времени, принятый за начальный, s(0) и r(0) считать равными нулю

1.32 За время t=6 с точка прошла путь, равный половине длины окружности радиусом R=0,8 м. Определить среднюю путевую скорость за это время и модуль вектора средней скорости

1.33 Движение точки по окружности радиусом R=4 м задано уравнением A+Bt+Ct2, где A=10 м, В=-2 м/с, С=1 м/с2. Найти тангенциальное нормальное и полное ускорения точки в момент времени t=2 c.

1.34 По дуге окружности радиусом R=10 м движется точка. В некоторый момент времени нормальное ускорение точки 4,9 м/с2; в этот момент векторы полного и нормального ускорений образуют угол 60. Найти скорость v и тангенциальное ускорение точки.

1.35 Точка движется по окружности радиусом R=2 м согласно уравнению ξ=At3, где A=2 м/с3. В какой момент времени t нормальное ускорение точки будет равно тангенциальному? Определить полное ускорение а в этот момент.

1.36 Движение точки по кривой задано уравнениями x=A1t3 y=A2t, где A1=1 м/с3, A2=2 м/с. Найти уравнение траектории точки, ее скорость и полное ускорение в момент времени t=0,8 c.

1.37 Точка A движется равномерно со скоростью v по окружности радиусом R. Начальное положение точки и направление движения указаны на рис. 1.8. Написать кинематическое уравнение движения проекции точки A на направление оси x.

1.38 Точка движется равномерно со скоростью v по окружности радиусом R и в момент времени, принятый за начальный t=0, занимает положение, указанное на рис. 1.8. Написать кинематические уравнения движения точки в декартовой системе координат, расположив оси так, как это указано на рисунке; в полярной системе координат (ось x считать полярной осью)

1.39 Написать для четырех случаев, представленных на рис. 1.9: кинематические уравнения движения x=f1(t) и y=f2(t); уравнение траектории y=φ(x). На каждой позиции рисунка изображены координатные оси, указаны начальное положение точки A, ее начальная скорость v0 и ускорение g.

1.40 С вышки бросили камень в горизонтальном направлении. Через промежуток времени t=2 с камень упал на землю на расстоянии s=40 м от основания вышки. Определить начальную v0 и конечную v скорости камня.

1.41 Тело, брошенное с башни в горизонтальном направлении со скоростью v=20 м/с, упало на землю на расстоянии s от основания башни, вдвое большем высоты h башни. Найти высоту башни.

1.42 Пистолетная пуля пробила два вертикально закрепленных листа бумаги, расстояние между которыми равно 30 м. Пробоина во втором листе оказалась на h=10 см ниже, чем в первом. Определить скорость пули, если к первому листу она подлетела, двигаясь горизонтально. Сопротивлением воздуха пренебречь.

1.43 Самолет, летевший на высоте h=2940 м со скоростью v=360 км/ч, сбросил бомбу. За какое время t до прохождения над целью и на каком расстоянии s от нее должен самолет сбросить бомбу, чтобы попасть в цель? Сопротивлением воздуха пренебречь.

1.44 Тело брошено под некоторым углом к горизонту. Найти этот угол, если горизонтальная дальность s полета тела в четыре раза больше максимальной высоты H траектории.

1.45 Миномет установлен под углом 60 к горизонту на крыше здания, высота которого h=40 м. Начальная скорость мины равна 50 м/с. Требуется написать кинематические уравнения движения и уравнения траектории и начертить эту траекторию с соблюдением масштаба; определить время τ полета мины, максимальную высоту H ее подъема, горизонтальную дальность s полета, скорость v в момент падения мины на землю. Сопротивлением воздуха пренебречь.

1.46 Снаряд, выпущенный из орудия под углом 30 к горизонту, дважды был на одной и той же высоте h спустя время t1=10 с и t2=50 с после выстрела. Определить начальную скорость v0 и высоту h.

1.47 Пуля пущена с начальной скоростью v0=200 м/с под углом 60 к горизонту. Определить максимальную высоту подъема, дальность s полета и радиус R кривизны траектории пули в ее наивысшей точке. Сопротивлением воздуха пренебречь.

1.48 Камень брошен с вышки в горизонтальном направлении с начальной скоростью v0=30 м/с. Определить скорость v, тангенциальное и нормальное ускорения камня в конце второй секунды после начала движения.

1.49 Тело брошено под углом 30 к горизонту. Найти тангенциальное аτ и нормальное an ускорения в начальный момент движения.

1.50 Определить линейную скорость v и центростремительное ускорение aц точек, лежащих на земной поверхности: на экваторе; на широте Москвы φ=56

1.51 Линейная скорость v1 точек на окружности вращающегося диска равна 3 м/с. Точки, расположенные на 10 см ближе к оси, имеют линейную скорость v2=2 м/с. Определить частоту вращения диска.

1.52 Два бумажных диска насажены на общую горизонтальную ось так, что плоскости их параллельны и отстоят на d=30 см друг от друга. Диски вращаются с частотой n=25. Пуля, летевшая параллельно оси на расстоянии r=12 см от нее, пробила оба диска. Пробоины в дисках смещены друг относительно друга на расстояние s=5 см, считая по дуге окружности. Найти среднюю путевую скорость пули в промежутке между дисками и оценить создаваемое силой тяжести смещение пробоин в вертикальном направлении. Сопротивление воздуха не учитывать.

1.53 На цилиндр, который может вращаться около горизонтальной оси, намотана нить. К концу нити привязали грузик и предоставили ему возможность опускаться. Двигаясь равноускоренно, грузик за время t=3 с опустился на h=1,5 м. Определить угловое ускорение цилиндра, если его радиус r=4 см.

1.54 Диск радиусом r=10 см, находившийся в состоянии покоя, начал вращаться с постоянным угловым ускорением 0,5 рад/с2. Найти тангенциальное, нормальное и полное ускорения точек на окружности диска в конце второй секунды после начала вращения.

1.55 Диск радиусом r=20 см вращается согласно уравнению A+Bt+Ct3, где A=3 рад, B=-1 рад/с, С=0,1 рад/с3. Определить тангенциальное нормальное и полное ускорения точек на окружности диска для момента времени t=10 c.

1.56 Маховик начал вращаться равноускоренно и за промежуток времени t=10 с достиг частоты вращения n=300. Определить угловое ускорение маховика и число N оборотов, которое он сделал за это время.

1.57 Велосипедное колесо вращается с частотой n=5. Под действием сил трения оно остановилось через интервал времени t=1 мин. Определить угловое ускорение и число оборотов, которое сделает колесо за это время.

1.58 Колесо автомашины вращается равноускоренно. Сделав 50 полных оборотов, оно изменило частоту вращения от n1=4 до n2=6 с-1. Определить угловое ускорение ε колеса.

1.59 Диск вращается с угловым ускорением ε=-2 рад/с2. Сколько оборотов N сделает диск при изменении частоты вращения от n1=240 до n2=90 мин-1? Найти время t, в течение которого это произойдет.

1.60 Винт аэросаней вращается с частотой n=360. Скорость v поступательного движения аэросаней равна 54 км/ч. С какой скоростью u движется один из концов винта, если радиус R винта равен 1 м?

1.61 На токарном станке протачивается вал диаметром d=60 мм. Продольная подача h резца равна 0,5 мм за один оборот. Какова скорость резания, если за интервал времени t=1 мин протачивается участок вала длиной 12 см