2. Через точку M, взятую на медиане AD треугольника ABC, и вершину B проведена прямая, пересекающая сторону AC в точке K. Найдите отношение AK/KC, если: a) M – середина отрезка AD; б) AM/MD = 1/2. |
Задача из учебного пособия Задачи для абитуриентов |
Данная задача находится в разделе
Решебник Задачи для абитуриентов на странице № 3
<<< Предыдущая задача из Задачи для абитуриентов 1. Площади двух подобных треугольников равны 75 м2 и 300 м2. Одна из сторон второго треугольника равна 9 м. Найдите сходственную ей сторону первого треугольника. Следующая задача из Задачи для абитуриентов >>> 3. В треугольнике ABC проведена прямая DE, параллельная основанию AC. Площадь треугольника ABC равна 8 кв. ед., а площадь треугольника DEC равна 2 кв. ед. Найти отношение длины отрезка DE к длине основания треугольника ABC.
|
| |