59.7. Автомашина движется по дороге без уклона со скоро... Мещерский - Решение задачи № 56993

ГДЗ, решебники, лабораторные работы » ГДЗ онлайн » » ГДЗ Мещерский

59.7. Автомашина движется по дороге без уклона со скоростью 15 м/с. При торможении сила трения постоянна во времени, но может принимать различные значения. Принимается, что удельная сила трения при торможении является случайной величиной с гауссовским распределением, ее математическое ожидание равно 3000 Н на 1 т массы, а среднее квадратическое отклонение составляет 700 Н на 1 т массы. Определить значения вероятности того, что тормозной путь до остановки превысит 40 м; 80 м.

Задача из учебного пособия Мещерский
Данная задача находится в разделе Решебник Мещерский на странице № 60




<<< Предыдущая задача из Мещерский
59.6. Вагон, центр масс которого находится на высоте 2,5 м от уровня полотна железной дороги с шириной колеи 1,5 м, движется по криволинейному участку с радиусом кривизны ρ = 800 м. Подъем наружного рельса над уровнем внутреннего выбран так, чтобы при скорости вагона, равной v = 20 м/с, давление колес на оба рельса было одинаковым. В действительности скорость вагона может быть различной. Принимается, что скорость является случайной величиной с гауссовским распределением, с математическим ожиданием mv = 15 м/с и средним квадратическим отклонением σv = 4 м/с. Определить отношение сил давления колес на внешний и внутренний рельсы при скорости, соответствующей верхней границе интервала, определенного для вероятности α = 0,99.
Следующая задача из Мещерский >>>
59.8. Ротор массы М, представляющий собой однородный цилиндр радиуса R и длины l, насажен на вал с перекосом и смещением, так что его ось симметрии отклонена от оси вала на малый случайный угол γ, а его центр, расположенный посередине между подшипниками, смещен относительно оси вала на случайную величину h. Расстояние между подшипниками равно 2L. Предполагается, что γ и h представляют собой независимые случайные величины, угол у имеет нулевое математическое ожидание, расстояние h—математическое ожидание тн и средние квадратические отклонения соответственно равны σγ и σh. Угловая скорость ω вращения ротора вокруг вертикальной оси считается случайной величиной с математическим ожиданием mω и средним квадратическим отклонением σω. Определить средние квадратические отклонения σR1 и σR2 реакций подшипников R1 и R2.