55.24 Два одинаковых жестких стержня длины R имеют общую точку подвеса O. Стержни могут вращаться в вертикальной плоскости вокруг точки подвеса независимо друг от друга. К концам стержней прикреплены два одинаковых груза А и В массы т каждый, соединенные между собой пружиной жесткости c. Длина пружины в состоянии устойчивого равновесия системы равна l. Пренебрегая массой стержней, найти частоты главных колебаний около устойчивого положения равновесия грузов. |
Задача из учебного пособия Мещерский |
Данная задача находится в разделе
Решебник Мещерский на странице № 57
<<< Предыдущая задача из Мещерский 55.23 Определить малые колебания математического маятника длины l и веса Р2, подвешенного к вертикально движущемуся ползуну А веса Р1, прикрепленному к пружине жесткости c. Ползун при своем движении испытывает сопротивление, пропорциональное его скорости (b — коэффициент пропорциональности). Найти условия, при которых в случае b = 0 главные частоты данной системы будут равны между собой. Следующая задача из Мещерский >>> 55.26. Тяжелый однородный стержень длины l и массы m1 нижним концом опирается на шарнир и удерживается в вертикальном положении с помощью пружины жесткости c. К точке стержня, отстоящей от шарнира на расстоянии a, подвешен на нити длины r груз М массы m2. При вертикальном положении стержня пружина находится в ненапряженном состоянии и расположена горизонтально. При какой жесткости пружины стержень и груз могуг совершать малые колебания около вертикального положения? Найти уравнение частот этих колебаний. Массой нити пренебречь.
|
| |