51.2 Определить гравитационный параметр и ускорение силы тяжести gn на поверхности небесного тела, если известны отношения его массы Мn и радиуса Rn к массе М и радиусу R Земли. Вычислить эти величины для Луны, Венеры, Марса и Юпитера, для которых соответствующие отношения даны в следующей таблице: |
Задача из учебного пособия Мещерский |
Данная задача находится в разделе
Решебник Мещерский на странице № 51
<<< Предыдущая задача из Мещерский 51.1 Модуль силы всемирного тяготения, действующий на материальную точку массы m, определяется равенством F = mμ/r2, где μ = fМ— гравитационный параметр притягивающего центра (М — его масса, f—гравитационная постоянная) и r—расстояние от центра притяжения до притягиваемой точки. Зная радиус R небесного тела и ускорение g силы тяжести *) на его поверхности, определить гравитационный параметр ц небесного тела и вычислить его для Земли, если ее радиус R =6370 км, а g = 9,81 м/с2. Следующая задача из Мещерский >>> 51.3 Материальная точка равномерно движется по круговой орбите на высоте H над поверхностью небесного тела радиуса R под действием силы всемирного тяготения. Определить скорость движения v1 и период обращения Т материальной точки.
|
| |