31.27 При условиях предыдущей задачи, считая ось конуса направленной по вертикали вверх и учитывая силу тяжести, определить давление точки на поверхность конуса. |
Задача из учебного пособия Мещерский |
Данная задача находится в разделе
Решебник Мещерский на странице № 32
<<< Предыдущая задача из Мещерский 31.26 Точка M массы m=1 кг движется по гладкой поверхности круглого конуса, угол раствора которого 2α=90°, под влиянием силы отталкивания от вершины O, пропорциональной расстоянию: F=c*OM Н, где c=1 Н/м. В начальный момент точка M находится в точке A, расстояние OA равно a=2 м, начальная скорость v0=2 м/с и направлена параллельно основанию конуса. Определить движение точки M (силой тяжести пренебречь). Положение точки M определяем координатой z и полярными координатами r и φ в плоскости, перпендикулярной оси Oz; уравнение поверхности конуса r2-z2=0. Следующая задача из Мещерский >>> 31.28 Материальная точка A под действием силы тяжести движется по шероховатой винтовой поверхности, ось которой Oz вертикальна; поверхность задана уравнением z=aφ+f(r); коэффициент трения точки о поверхность равен k. Найти условие, при котором движение точки происходит на постоянном расстоянии от оси AB=r0, т.е. происходит по винтовой линии, а также найти скорость этого движения, предполагая, что a=const. Указание. Для решения задачи целесообразно воспользоваться системой естественных осей, проектируя уравнение движения на касательную, главную нормаль и бинормаль винтовой линии в точке A. На рисунке угол между нормальной компонентой N реакции винтовой поверхности и ортом главной нормали n° обозначен через β.
|
| |