23.43 Диск вращается с постоянной угловой скоростью ω вокруг оси, проходящей через его центр перпендикулярно плоскости диска. По хорде AB из ее середины D движется точка M с постоянной относительной скоростью u. Хорда отстоит от центра диска на расстоянии c. Найти абсолютную скорость и абсолютное ускорение точки M как функции расстояния DM=x. |
Задача из учебного пособия Мещерский |
Данная задача находится в разделе
Решебник Мещерский на странице № 23
<<< Предыдущая задача из Мещерский 23.42 Диск радиуса R вращается с постоянной угловой скоростью ω вокруг оси, проходящей через его центр перпендикулярно плоскости диска. По одному из диаметров диска движется точка M так, что ее расстояние от центра диска меняется по закону OM=R sin ωt. Найти абсолютную траекторию, абсолютную скорость и абсолютное ускорение точки M. Следующая задача из Мещерский >>> 23.44 По подвижному радиусу диска от центра к ободу движется точка M с постоянной скоростью vr. Подвижный радиус поворачивается в плоскости диска с постоянной угловой скоростью ω1. Плоскость диска вращается вокруг своего диаметра с постоянной угловой скоростью ω2. Найти абсолютную скорость точки M, считая, что при t=0 точка M находилась в центре диска, а подвижный радиус был направлен по оси вращения диска.
|
| |