23.42 Диск радиуса R вращается с постоянной угловой скоростью ω вокруг оси, проходящей через его центр перпендикулярно плоскости диска. По одному из диаметров диска движется точка M так, что ее расстояние от центра диска меняется по закону OM=R sin ωt. Найти абсолютную траекторию, абсолютную скорость и абсолютное ускорение точки M. |
Задача из учебного пособия Мещерский |
Данная задача находится в разделе
Решебник Мещерский на странице № 23
<<< Предыдущая задача из Мещерский 23.41 По ободу диска радиуса R, вращающегося вокруг своего диаметра с постоянной угловой скоростью ω, движется с постоянной по модулю скоростью v точка M. Найти абсолютное ускорение точки M как функцию угла φ, составленного радиус-вектором точки с осью вращения диска. Следующая задача из Мещерский >>> 23.43 Диск вращается с постоянной угловой скоростью ω вокруг оси, проходящей через его центр перпендикулярно плоскости диска. По хорде AB из ее середины D движется точка M с постоянной относительной скоростью u. Хорда отстоит от центра диска на расстоянии c. Найти абсолютную скорость и абсолютное ускорение точки M как функции расстояния DM=x.
|
| |