18.2 При движении диска радиуса r=20 см в вертикальной плоскости xy его центр C движется согласно уравнениям xC=10t м, yC=(100-4,9t2) м. При этом диск вращается вокруг горизонтальной оси C, перпендикулярной плоскости диска, с постоянной угловой скоростью ω=π/2 рад/с (см. рисунок к задаче 16.3). Определить в момент времени t=0 ускорение точки A, лежащей на ободе диска. Положение точки A на диске определяется углом φ=ωt, отсчитываемым от вертикали против хода часовой стрелки. |
Задача из учебного пособия Мещерский |
Данная задача находится в разделе
Решебник Мещерский на странице № 18
<<< Предыдущая задача из Мещерский 18.1 Колесо катится по наклонной плоскости, образующей угол 30° с горизонтом (см. рисунок к задаче 16.2). Центр O колеса движется по закону xO=10t2 см, где x — ось, направленная параллельно наклонной плоскости. К центру O колеса подвешен стержень OA=36 см, качающийся вокруг горизонтальной оси O, перпендикулярной плоскости рисунка, по закону φ=(π/3)sin(πt/6) рад. Найти ускорение конца A стержня OA в момент времени t=1 c. Следующая задача из Мещерский >>> Сохранив условие предыдущей задачи, определить ускорение точки A в момент времени t=1 c.
|
| |