12.33 Точка M движется по линии пересечения сферы x2+y2+z2=R2 и цилиндра (x-R/2)2+y2=R2/4. Уравнения движения точки в сферических координатах имеют вид (см. задачу 10.21) r = R, φ = kt/2, θ = kt/2. Найти проекции и модуль ускорения точки в сферических координатах. |
Задача из учебного пособия Мещерский |
Данная задача находится в разделе
Решебник Мещерский на странице № 14
<<< Предыдущая задача из Мещерский 12.32 Точка M движется по винтовой линии. Уравнения движения ее в цилиндрической системе координат имеют вид r = a, φ = kt, z = νt. Найти проекции ускорения точки на оси цилиндрической системы координат, касательную и нормальную составляющие ускорения и радиус кривизны винтовой линии. Следующая задача из Мещерский >>> 12.34 Корабль движется под постоянным курсовым углом α к географическому меридиану, описывая при этом локсодромию (см. задачу 11.13). Считая, что модуль скорости v корабля не изменяется, определить проекции ускорения корабля на оси сферических координат r, λ и φ (λ — долгота, φ — широта места плавания), модуль ускорения и радиус кривизны локсодромии.
|
| |