10.9 Груз, поднятый на упругом канате, колеблется согласно уравнению x=a sin(kt+Зπ/2), где a — в сантиметрах, k — в рад/с. Определить амплитуду и круговую частоту колебаний груза, если период колебаний равен 0,4 с и в начальный момент x0=-4 см. Построить также кривую расстояний. |
Задача из учебного пособия Мещерский |
Данная задача находится в разделе
Решебник Мещерский на странице № 10
<<< Предыдущая задача из Мещерский 10.8 Гармонические колебания точки определяются законом x=a sin(kt+ε), где a > 0 — амплитуда колебаний, k > 0 — круговая частота колебаний и ε (-π ≤ ε ≤ π) — начальная фаза. Определить центр колебаний a0, амплитуду, круговую частоту, период T, частоту колебаний f в герцах и начальную фазу по следующим уравнениям движения (x — в сантиметрах, f — в секундах):
1) x = -7 cos 12t.
2) x = 4 sin (πt/20) - 3 cos (πt/20).
3) x = 2 - 4 sin 140t.
4) x = 6 sin2 18t.
5) x = 1 - 4 cos2 (πt/60). Следующая задача из Мещерский >>> 10.10 Определить траекторию точки, совершающей одновременно два гармонических колебания равной частоты, но разных амплитуд и фаз, если колебания происходят по двум взаимно перпендикулярным осям: x=a sin(kt+α), y=b sin(kt+β).
|
| |