ГДЗ, решебники, лабораторные работы » ГДЗ онлайн » » ГДЗ Мещерский

16.40 В машине с качающимся цилиндром длина кривошипа OA=r и расстояние OO1=a. Кривошип вращается с постоянной угловой скоростью ω0. Определить угловую скорость ω1 шатуна AB в зависимости от угла поворота кривошипа φ. Определить наибольшее и наименьшее значения ω1, а также значение угла φ, при котором ω1=0. (См. рисунок к задаче 16.26.)

Задача из учебного пособия Мещерский
Данная задача находится в разделе Решебник Мещерский на странице № 17


Решение задачи № 3085


<<< Предыдущая задача из Мещерский
16.39 Планетарный механизм состоит из кривошипа O1A, приводящего в движение шатун AB, коромысла OB и колеса I радиуса r1=25 см; шатун AB оканчивается шестеренкой II радиуса r2=10 см, наглухо с ним связанной. Определить угловую скорость кривошипа O1A и колеса I в момент, когда α=45°, β=90°, если O1A=30√2 см, AB=150 см, угловая скорость коромысла OB ω=8 рад/с.
Следующая задача из Мещерский >>>
16.41 Найти приближенное выражение для проекции на координатные оси скорости любой точки M шатуна AB кривошипного механизма при равномерном вращении вала с угловой скоростью ω, предполагая, что длина кривошипа r мала по сравнению с длиной шатуна l. Положение точки M определяется ее расстоянием MB=z. Примечание. В формулу, получаемую при решении задачи, входит √(1-((r/l)sin φ)2), где φ=ωt обозначает угол BOA. Это выражение разлагаем в ряд и удерживаем только два первых члена.