ГДЗ, решебники, лабораторные работы » ГДЗ онлайн » ГДЗ по термеху » ГДЗ к задачнику Мещерский
ГДЗ к задачнику Мещерский
Решения задач из учебника Мещерский
Страницы: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  12  |  13  |  14  |  15  |  16  |  17  |  18  |  19  |  20  |  21  |  22  |  23  |  24  |  25  |  26  |  27  |  28  |  29  |  30  |  31  |  32  |  33  |  34  |  35  |  36  |  37  |  38  |  39  |  40  |  41  |  42  |  43  |  44  |  45  |  46  |  47  |  48  |  49  |  50  |  51  |  52  |  53  |  54  |  55  |  56  |  57  |  58  |  59  |  60
Чтобы посмотреть решение, нажмите на соответствующее условие задачи

Посмотреть содержание ГДЗ задачника Мещерского


55.1 Для экспериментального исследования процесса регулирования гидравлических турбин сконструирована установка, состоящая из турбины, ротор которой имеет момент инерции относительно оси вращения J1 = 50 кг*см2, маховика с моментом инерции J2 = 1500 кг*см2 и упругого вала C, соединяющего ротор турбины с маховиком; вал имеет длину l= 1552 мм, диаметр d = = 25,4 мм, модуль сдвига материала вала 8800 кН/см. Пренебрегая массой вала и скручиванием его толстых участков, найти то сечение mn вала, которое при свободных колебаниях данной системы остается неподвижным (узловое сечение), а также вычислить период T свободных колебаний системы.

55.2 Определить частоты свободных крутильных колебаний системы, состоящей из вала, закрепленного на одном конце, с насаженными посредине и на другом конце однородными дисками. Момент инерции каждого диска относительно оси вала J; жесткость на кручение участков вала k1=k2=k. Массой вала пренебречь.

55.3 Определить частоты главных крутильных колебаний системы, состоящей из вала с насаженными на него тремя одинаковыми дисками. Два диска закреплены на концах вала, а третий — посредине. Момент инерции каждого диска относительно оси вала J; жесткость на кручение участков вала k1=k2=k. Массой вала пренебречь.

55.4 Два одинаковых маятника длины l и массы m каждый соединены на уровне h упругой пружиной жесткости k, прикрепленной концами к стержням маятников. Определить малые колебания системы в плоскости равновесного положения маятников, после того как одному из маятников сообщено отклонение на угол α от положения равновесия; начальные скорости маятников равны нулю. Массами стержней маятников и массой пружины пренебречь.

55.5 Диск массы M может катиться без скольжения по прямолинейному рельсу. К центру диска шарнирно прикреплен стержень длины l, на конце которого находится точечный груз массы m. Найти период малых колебаний маятника. Массой стержня пренебречь.

55.6 Заменяя в предыдущей задаче прямолинейный рельс дугой окружности радиуса R, найти частоты малых колебаний рассматриваемой системы.

55.7 Маятник состоит из ползуна массы M, скользящего без трения по горизонтальной плоскости, и шарика массы m, соединенного с ползуном стержнем длины l, могущим вращаться вокруг оси, связанной с ползуном. К ползуну присоединена пружина жесткости k, другой конец которой закреплен неподвижно. Определить частоты малых колебаний системы.

55.8 Два одинаковых физических маятника подвешены на параллельных горизонтальных осях, расположенных в одной горизонтальной плоскости, и связаны упругой пружиной, длина которой в ненапряженном состоянии равна расстоянию между осями маятников. Пренебрегая сопротивлением движению и массой пружины, определить частоты и отношения амплитуд главных колебаний системы при малых углах отклонения от равновесного положения. Вес каждого маятника P; радиус инерции его относительно оси, проходящей через центр масс параллельно оси подвеса, ρ; жесткость пружины k, расстояния от центра масс маятника и от точки прикрепления пружины к маятникам до оси подвеса равны соответственно l и h. (См. рисунок к задаче 55.4.)

55.9 Однородный стержень AB длины L подвешен при помощи нити длины l=0,5L к неподвижной точке. Пренебрегая массой нити, определить частоты главных колебаний системы и найти отношение отклонений стержня и нити от вертикали при первом и втором главных колебаниях.

55.10 Предполагая в предыдущей задаче, что длина нити весьма велика по сравнению с длиной стержня, и пренебрегая квадратом отношения L/l, определить отношение низшей частоты свободных колебаний системы к частоте колебаний математического маятника длины l.

55.11 Считая в задаче 55.9, что длина нити весьма мала по сравнению с длиной стержня, и пренебрегая квадратом отношения l/L, определить отношение низшей частоты свободных колебаний системы к частоте колебаний физического маятника, если ось вращения поместить в конце стержня.

55.12 Определить частоты главных колебаний двойного математического маятника при условии, что массы грузов M1 и M2 соответственно равны m1 и m2, OM1=l1, M1M2=l2, а к грузу M1 присоединена пружина, массой которой можно пренебречь. Длина пружины в ненапряженном состоянии равна l0, жесткость пружины k.

55.13 Двойной физический маятник состоит из однородного прямолинейного стержня O1O2 длины 2a и веса P1, вращающегося вокруг неподвижной горизонтальной оси O1, и из однородного прямолинейного стержня AB веса P2, шарнирно соединенного в своем центре масс с концом O2 первого стержня. Определить движение системы, если в начальный момент стержень O1O2 отклонен на угол φ0 от вертикали, а стержень AB занимает вертикальное положение и имеет начальную угловую скорость ω0.

55.14 Стержень AB веса P подвешен за концы A и B к потолку на двух одинаковых нерастяжимых нитях длины a. К стержню AB подвешена на двух одинаковых нерастяжимых нитях длины b балка CD веса Q. Предполагая, что колебания происходят в вертикальной плоскости, найти частоты главных колебаний. Массами нитей пренебречь.

55.15 Исследовать колебания железнодорожного вагона в его средней вертикальной плоскости, если вес подрессоренной части вагона Q, расстояния центра масс от вертикальных плоскостей, проведенных через оси, l1=l2=l; радиус инерции относительно центральной оси, параллельной осям вагона, ρ; жесткость рессор для обеих осей одинакова: k1=k2=k.

55.16 Исследовать малые свободные колебания груженой платформы веса P, опирающейся в точках A и B на две рессоры одинаковой жесткости k. Центр масс C платформы с грузом находится на прямой AB, причем AC=a и CB=b. Платформа выведена из положения равновесия путем сообщения центру масс начальной скорости v0, направленной вертикально вниз без начального отклонения. Массы рессор и силы трения не учитывать. Момент инерции платформы относительно горизонтальной поперечной оси, проходящей через центр масс платформы, равен JC=0,1(a2+b2)P/g. Колебания происходят в вертикальной плоскости. За обобщенные координаты принять: y — отклонение центра масс от положения равновесия вниз, ψ — угол поворота платформы вокруг центра масс.

55.17 Платформа тележки опирается в точках А и В на две рессоры одинаковой жесткости c, расстояние между осями рессор AB = l; центр масс С платформы расположен на прямой AB, являющейся осью симметрии платформы, на расстоянии AC = a =l/3 от точки A (см. рисунок к задаче 55.16). Радиус инерции платформы относительно оси, проходящей через ее центр масс перпендикулярно прямой А В и лежащей в плоскости платформы, принять равным 0,2l; вес платформы равен Q. Найти малые колебания платформы, возникающие под действием удара, приложенного в центре масс платформы перпендикулярно ее плоскости, удара равен S.

55.18 Две одинаковые материальные точки М1 и М2 массы m каждая прикреплены симметрично на равных расстояниях от концов к натянутой нити, имеющей длину 2(а + Ь); натяжение нити равно p. Определить частоты главных колебаний и найти главные координаты.

55.19 Определить частоты малых колебаний тяжелой материальной точки, колеблющейся около положения равновесия на гладкой поверхности, обращенной вогнутой стороной кверху; главные радиусы кривизны поверхности в точке, отвечающей положению равновесия, равны ρ1 и ρ2.

55.20 Определить частоты малых колебаний тяжелой материальной точки около ее положения равновесия, совпадающего с наиболее низкой точкой поверхности, вращающейся с постоянной угловой скоростью (о вокруг вертикальной оси, проходящей через эту точку. Главные радиусы кривизны поверхности в ее нижней точке p1 и р2.

55.21 Круглый однородный диск радиуса r и массы M связан шарниром со стержнем OA длины l, могущим поворачиваться около неподвижной горизонтальной оси. На окружности диска закреплена материальная точка B массы m. Определить частоты свободных колебаний системы. Массой стержня пренебречь. Диск может вращаться в плоскости колебаний стержня OA.

55.22 На проволочную окружность радиуса R, плоскость которой горизонтальна, надеты два одинаковых колечка, соединенные пружиной жесткости c, имеющей в ненапряженном состоянии длину l0. Определить движение колечек, приняв их за материальные точки массы т. Принять, что в начальный момент φ1= 0, а колечко В отклонено от своего равновесного положения на величину дуги, равную 2Rβ. Начальные скорости колечек равны нулю.

55.23 Определить малые колебания математического маятника длины l и веса Р2, подвешенного к вертикально движущемуся ползуну А веса Р1, прикрепленному к пружине жесткости c. Ползун при своем движении испытывает сопротивление, пропорциональное его скорости (b — коэффициент пропорциональности). Найти условия, при которых в случае b = 0 главные частоты данной системы будут равны между собой.

55.24 Два одинаковых жестких стержня длины R имеют общую точку подвеса O. Стержни могут вращаться в вертикальной плоскости вокруг точки подвеса независимо друг от друга. К концам стержней прикреплены два одинаковых груза А и В массы т каждый, соединенные между собой пружиной жесткости c. Длина пружины в состоянии устойчивого равновесия системы равна l. Пренебрегая массой стержней, найти частоты главных колебаний около устойчивого положения равновесия грузов.

55.25 К движущейся по заданному закону ξ=ξ(t) платформе подвешена на пружине жесткости c1 механическая система, состоящая из массы m1, к которой жестко присоединен в точке B поршень демпфера. Камера демпфера, масса которого равна m2, опирается на пружину жесткости c2, противоположный конец которой прикреплен к поршню. Вязкое трение в демпфере пропорционально относительной скорости поршня и камеры; ρ — коэффициент сопротивления. Составить уравнения движения системы.

55.26. Тяжелый однородный стержень длины l и массы m1 нижним концом опирается на шарнир и удерживается в вертикальном положении с помощью пружины жесткости c. К точке стержня, отстоящей от шарнира на расстоянии a, подвешен на нити длины r груз М массы m2. При вертикальном положении стержня пружина находится в ненапряженном состоянии и расположена горизонтально. При какой жесткости пружины стержень и груз могуг совершать малые колебания около вертикального положения? Найти уравнение частот этих колебаний. Массой нити пренебречь.

55.27. Однородная балка AB длины l, массы m1 опирается в точке В на пружину жесткости c, а в точке А на цилиндрический шарнир. В точке E балки на расстоянии а от шарнира А на стержне длины r с помощью шарнира подвешен груз М массы m2. В положении равновесия балка AB горизонтальна. Найти уравнение малых колебаний балки и груза. Массой стержня пренебречь.

55.28 Определить частоты свободных крутильных колебаний системы, состоящей из двух валов, соединенных зубчатой передачей. Моменты инерции масс, насаженных на валы, и моменты инерции зубчатых колес относительно оси валов имеют величины J1 =875*103 кг*см2, J2 = 560*103 кг*см2, i1 =3020 кг*см2, i2 = 105 кг*см2, передаточное число k = z1/z2 = 5; жесткости валов при кручении c1 = 316X 107 Н*см, с2 = 115*107 Н*см; массами валов пренебречь.

55.29 Определить, пренебрегая массой зубчатых колес, частоту свободных крутильных колебаний системы, описанной в предыдущей задаче.

55.30 Найти частоты и формы главных поперечных колебании балки длины l, свободно лежащей на двух опорах и нагруженной в точках x =1/3 и x=2/3l двумя равными грузами веса Q. Момент инерции поперечного сечения балки J, модуль упругости E. Массой балки пренебречь.

55.31 Найти частоты и формы главных поперечных колебаний балки длины l, опертой по концам и несущей два груза Q1 = Q и Q2 = 0,5Q, равноудаленных от опор на расстояние l/3. Массой балки пренебречь.

55.32 Найти частоты главных колебаний двух одинаковых грузов Q, закрепленных на концах горизонтальной консольной балки на равных расстояниях l от ее опор. Балка длины 3l свободно лежит на двух опорах, отстоящих друг от друга на расстоянии l, момент инерции поперечного сечения балки J; модуль упругости E. Массой балки пренебречь.

55.33 Однородная прямоугольная пластинка массы m закреплена в конце А балки длины l, другой конец которой заделан неподвижно. Система находится в горизонтальной плоскости и совершает в этой плоскости свободные колебания около положения равновесия. Определить частоты и формы этих колебаний, если a=0,2l, b = 0,1l. Массой балки пренебречь.

55.34 К первому из двух первоначально неподвижных дисков, соединенных упругим валом жесткости c, внезапно приложен постоянный вращающий момент M; моменты инерции дисков J. Пренебрегая массой вала, определитьпоследующее движение системы.

55.35 Двухъярусная шарнирно-стержневая система удерживается в вертикальном положении тремя пружинами, как это показано на рисунке. Стержни абсолютна жесткие, однородные: вес на длину l равен G. Полагая коэффициенты жесткости пружин равными c1 = с2 = 10G/l, определить устойчивость равновесия системы, а также частоты и формы f1 и f2 главных колебаний системы. Массой пружин пренебречь: l1=l2 = l.

55.36 Груз массы М укреплен на вершине стойки, жестко связанной с балкой AB, свободно лежащей на двух опорах. Полагая, что момент инерции поперечного сечения J, а модули упругости E балки и стоики одинаковы, определить частоты главных изгибных колебаний системы. Массами балки и стойки пренебречь.

55.37 Фундамент машины массы m1= 102* 102 кг, установленный на упругом грунте, совершает вертикальные вынужденные колебания под действием вертикальной возмущающей силы, меняющейся по закону F = 98 sin ωt кН. С целью устранения резонансных колебаний, обнаруживающихся при угловой скорости вала машины ω = 100 рад/с, на фундаменте установлен на упругих пружинах гаситель в виде тяжелой рамы. Подобрать массу рамы m и суммарную жесткость пружин с2 гасителя так, чтобы амплитуда вынужденных колебаний фундамента при вышеуказанной скорости вала обратилась в нуль, а амплитуда колебаний гасителя не превосходила А=2 мм.

55.38 Определить уравнения вынужденных колебаний системы дисков, описанной в задаче 55.2, при действии на средний диск возмущающего момента M=M0 sin pt.

55.39 Электромотор веса Q1 закреплен на упругом бетонном фундаменте (в виде сплошного параллелепипеда) веса Q2 с коэффициентом жесткости с2, установленном на жестком грунте. Ротор веса Р насажен на упругий горизонтальный вал с коэффициентом жесткости при изгибе c1; эксцентриситет ротора относительно вала r; угловая скорость вала ω. Определить вынужденные вертикальные колебания статора электромотора. Учесть влияние массы фундамента путем присоединения одной трети его массы к массе статора.

55.40 В точке А балки AB (см. задачу 55.14) приложена сила F = F0 sin pt (Fо и p - постоянные), составляющая все время с нитью OA прямой угол и расположенная в плоскости движения балки. Какова должна быть длина b нитей, на которых подвешена балка CD, чтобы амплитуда вынужденных колебаний балки AB равнялась нулю?

55.41 Для поглощения крутильных колебаний к одной из колеблющихся масс системы прикрепляется маятник. На рисунке схематически изображена система, состоящая из двух масс I и II, вращающихся с постоянной угловой скоростью ω. Ко второй массе прикреплен маятник. Моменты инерции масс относительно оси вращения J1 и J2; момент инерции маятника относительно оси, параллельной оси вращения системы и проходящей через центр масс маятника, J3. Расстояние между осью вращения системы и осью подвеса маятника OA=l; расстояние между осью подвеса и параллельной осью, проходящей через центр масс маятника, AC=a; масса маятника m. Коэффициент упругости (жесткость при кручении) участка вала между массами k1. Ко второй массе приложен внешний момент M=M0 sin ωt. Написать дифференциальные уравнения движения обеих масс системы и маятника. При составлении выражения для потенциальной энергии системы пренебречь потенциальной энергией маятника в поле силы тяжести.

55.42 Бак, имеющий форму куба, опирается четырьмя нижними углами на четыре одинаковые пружины; длина стороны куба 2а. Жесткости пружин в направлении осей, параллельных сторонам куба, равны сх, су, cz; момент инерции куба относительна главных центральных осей J. Составить уравнения малых колебаний и определить их частоты в случае сх = су. Масса бака равна М

55.43 Однородная горизонтальная прямоугольная пластина со сторонами а и b опирается своими углами на четыре одинаковые пружины жесткости c; масса пластины М. Определить частоты свободных колебаний.

55.44 Три железнодорожных груженых вагона веса Q1, Q2 и Q3 сцеплены между собой. Жесткости сцепок равны k1 и k2. Найти частоты главных колебаний системы.

55.45 При условиях предыдущей задачи найти уравнения движения вагонов и построить формы главных колебаний для случая вагонов равного веса Q1 = Q2 = Q3 = Q, соединенных сцепками одинаковой жесткости с1= с2 = c. В начальный момент два вагона находятся в положении равновесия, а крайний правый вагон отклонен на х0 от положения равновесия.

55.46 Найти частоты и формы главных колебаний системы, состоящей из трех одинаковых масс m, закрепленных на балке на одинаковых расстояниях друг от друга и от опор. Балку считать свободно положенной на опоры; длина балки l, момент инерции поперечного сечения J, модуль упругости E.

55.47 Система n одинаковых масс m, соединенных пружинами жесткости c, образует механический фильтр для продольных колебаний. Считая заданным закон поступательного движения левой массы x = x0sinωt, показать, что система является фильтром низких частот, т. е. что после перехода частоты ω через определенную границу амплитуды вынужденных колебаний отдельных масс изменяются в зависимости от номера массы по экспоненциальному закону, а до перехода - по гармоническому.

55.48 Фильтр крутильных колебаний схематизируется в виде длинного вала с насаженными на него дисками. Считая заданным закон движения левого диска в форме θ = θ0 sin ωt, определить вынужденные колебания системы и вычислить амплитуды колебаний отдельных дисков. Моменты инерции дисков J, жесткости участков вала между дисками одинаковы и равны c. Исследовать полученное решение и показать, что система является фильтром низких частот.

55.49 Механическая система, образующая полосовой фильтр для продольных колебаний, состоит из звеньев, каждое из которых образовано массой m, соединенной с массой следующего звена пружиной жесткости c. Параллельно с этой пружиной к массе присоединена пружина жесткости c1, связывающая массу т с неподвижной точкой. Закон продольных колебаний левой массы x = x0 sin ωt задан. Показать, что при значениях ω, лежащих в определенных границах, амплитуды колебаний отдельных масс изменяются с расстоянием по гармоническому закону. Найти соответствующие граничные частоты.

55.50 Система большого числа масс m, насаженных на расстоянии а друг от друга на струну АB, натянутую с усилием Т, и поддерживаемых пружинами жесткости c, является полосовым механическим фильтром поперечных колебаний. Вычислить частоты, отвечающие границам полосы пропускания.

55.51 Нить длины nl подвешена вертикально за один конец и нагружена на равных расстояниях а друг от друга n материальными точками с массами m. Составить уравнения движения. Найти для n = 3 частоты поперечных колебаний нити.

55.52 Определить частоты свободных поперечных колебаний натянутой нити с закрепленными концами, несущей на себе n масс m, отстоящих друг от друга на расстояниях l Натяжение нити Р.